Part Number Hot Search : 
51206 MAX28 RF154 RLPBF BFR93AT 10020 TS20P07G DAC100
Product Description
Full Text Search
 

To Download IRLR2905Z Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRLR2905Z irlu2905z v dss = 55v r ds(on) = 13.5m ? i d = 42a specifically designed for automotive applications, thi mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating tempera- ture, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g description logic level advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax features d-pak IRLR2905Z i-pak irlu2905z absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm p u l se d d ra i n c urrent  p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) si ng l e p u l se a va l anc h e e nergy  mj e as (tested ) si ng l e p u l se a va l anc h e e nergy t este d v a l ue  i ar a va l anc h e c urrent   a e ar r epet i t i ve a va l anc h e e nergy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc j unct i on-to- c ase  ??? 1.38 r ja j unct i on-to- a m bi ent (pcb mount )  ??? 40 c/w r ja j unct i on-to- a m bi ent  ??? 110 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) 110 0.72 16 max. 60 43 240 42 85 57 see fig.12a, 12b, 15, 16 2014-8-16 1 www.kersemi.com

s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 55 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.053 ??? v/c r ds(on) static drain-to-source on-resistance ??? 11 13.5 m ? ??? ??? 20 m ? ??? ??? 22.5 m ? v gs(th) gate threshold voltage 1.0 ??? 3.0 v gfs forward transconductance 25 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 23 35 q gs gate-to-source charge ??? 8.5 ??? nc q gd gate-to-drain ("miller") charge ??? 12 ??? t d(on) turn-on delay time ??? 14 ??? t r rise time ??? 130 ??? t d(off) turn-off delay time ??? 24 ??? ns t f fall time ??? 33 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 1570 ??? c oss output capacitance ??? 230 ??? c rss reverse transfer capacitance ??? 130 ??? pf c oss output capacitance ??? 840 ??? c oss output capacitance ??? 180 ??? c oss eff. effective output capacitance ??? 290 ??? source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 42 (body diode) a i sm pulsed source current ??? ??? 240 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 22 33 ns q rr reverse recovery charge ??? 14 21 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 5.0v, i d = 30a  v gs = 16v v gs = -16v v ds = 44v conditions v gs = 5.0v  v gs = 0v v ds = 25v ? = 1.0mhz mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 36a, v gs = 0v  t j = 25c, i f = 36a, v dd = 28v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 36a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c v gs = 4.5v, i d = 15a  v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 5.0v  v dd = 28v i d = 36a r g = 15 ? v ds = 25v, i d = 36a i d = 36a 2014-8-16 2 www.kersemi.com
fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 10v 60s pulse width t j = 25c t j = 175c 0 1020304050 i d, drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 8.0v 380s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 3.0v vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 3.0v vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 
2014-8-16 3 www.kersemi.com
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 500 1000 1500 2000 2500 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1020304050 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v vds= 11v i d = 36a 0.2 0.6 1.0 1.4 1.8 2.2 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 
2014-8-16 4 www.kersemi.com
fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 1e-006 1e-005 0.0001 0.001 0.01 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.765 0.000269 0.6141 0.001614 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 5.0v 
2014-8-16 5 www.kersemi.com
q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 240 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 36a 6.2a bottom 4.3a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 
2014-8-16 6 www.kersemi.com
fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 10 20 30 40 50 60 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 36a 
2014-8-16 7 www.kersemi.com
fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms 
2014-8-16 8 www.kersemi.com
 

   
   
   

 6.73 (.265) 6.35 (.250) - a - 4 1 2 3 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 4.57 (.180) 2.28 (.090) 2x 1.14 (.045) 0.76 (.030) 1.52 (.060) 1.15 (.045) 1.02 (.040) 1.64 (.025) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) 6.45 (.245) 5.68 (.224) 0.51 (.020) min. 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain 10.42 (.410) 9.40 (.370) notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before solder dip, solder dip max. +0.16 (.006). example: lot code 9u1p this is an irfr120 wi t h as s e mb l y week = 16 dat e code year = 0 logo rectifier international assembly lot code 016 irfu120 9u 1p notes : t his part mar king informati on appli es to devi ces produced before 02/26/2001 international logo rectifier 34 12 irfu120 916a lot code as s e mb l y example: wi t h as s e mb l y this is an irfr120 year 9 = 1999 dat e code line a we e k 16 in the as sembly line "a" as s e mbled on ww 16, 1999 lot code 1234 part number notes : t his part marking information applies to devices produced after 02/26/2001 
2014-8-16 9 www.kersemi.com
 
   
   
   
  6.73 (.265) 6.35 (.250) - a - 6.22 (.245) 5.97 (.235) - b - 3x 0.89 (.035) 0.64 (.025) 0.25 (.010) m a m b 2.28 (.090) 1.14 (.045) 0.76 (.030) 5.46 (.215) 5.21 (.205) 1.27 (.050) 0.88 (.035) 2.38 (.094) 2.19 (.086) 1.14 (.045) 0.89 (.035) 0.58 (.023) 0.46 (.018) lead assignments 1 - gate 2 - drain 3 - source 4 - drain notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-252aa. 4 dimensions shown are before solder dip, solder dip max. +0.16 (.006). 9.65 (.380) 8.89 (.350) 2x 3x 2.28 (.090) 1.91 (.075) 1.52 (.060) 1.15 (.045) 4 1 2 3 6.45 (.245) 5.68 (.224) 0.58 (.023) 0.46 (.018) we e k = 16 dat e code year = 0 notes : t hi s part mar ki ng i nfor mati on appl i es to devi ces produced before 02/26/2001 example: lot code 9u1p this is an irfr120 with assembly as s e mb l y international rect ifier logo lot code irf u120 9u 1p 016 international logo rect ifier lot code as s e mb l y example: with assembly this is an irfr120 ye ar 9 = 1999 dat e code line a we e k 19 in the assembly line "a" as s embled on ww 19, 1999 lot code 5678 part number notes : t his part marking information applies to devices produced after 02/26/2001 56 irf u120 919a 78 
2014-8-16 10 www.kersemi.com
 

 
   
  tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.089mh r g = 25 ? , i as = 36a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994      )  !"#$% 
2014-8-16 11 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRLR2905Z

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X